
EE 435

Lecture 16

Compensation of Feedback Amplifiers 



How does the Gain of the Two-Stage Miller-Compensated 

Op Amp Compare with Internal Compensated Op Amp?
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Feedback applications of the two-

stage Op Amp
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Open-loop Gain

Standard Feedback Gain

• Open-loop and closed-loop zeros identical

• Closed-loop poles different than open-loop poles

• Often β(s) is not dependent upon frequency
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Pole Locations

What closed-loop pole Q is typically required when 

compensating an op amp?

Recall:

Typically compensate so closed-loop poles make 

angle between 45o and 90o from imaginary axis
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Basic Two-Stage Op Amp
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Right Half-Plane Zero in OL Gain  (from Miller Compensation) Limits Performance
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But what pole Q is desired? .707< Q <0.5

(because it increases the pole Q and thus requires a larger CC!)

(with Miller compensation)

Closed-form expression for CC!
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Basic Two-Stage Op Amp with Feedback
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where

Open-loop gain

Standard feedback  gain with constant β
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Status on Compensation

Generally not needed for single-stage op amps

Analytical expressions were developed with               for 
Two-stage with internal node compensation (no OL zeros)

Two-stage with load compensation (no OL zeros)

Two-stage with basic Miller compensation (OL zero, single series comp cap)

Will now develop a more general compensation strategy
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Compensation

From Wikipedia:  In electrical engineering, frequency compensation is a 

technique used in amplifiers, and especially in amplifiers employing 

negative feedback. It usually has two primary goals: To avoid the 

unintentional creation of positive feedback, which will cause the amplifier to 

oscillate, and to control overshoot and ringing in the amplifier's step 

response.

From Martin and Johns – no specific definition but makes comparisons with 

“optimal compensation” which also is not defined

From Allen and Holberg (p 243)   The goal of compensation is to maintain stability 

when negative feedback is applied around the op amp.

What is “compensation” or “frequency 

compensation”?

http://en.wikipedia.org/wiki/Electrical_engineering
http://en.wikipedia.org/wiki/Amplifiers
http://en.wikipedia.org/wiki/Positive_feedback
http://en.wikipedia.org/wiki/Electronic_oscillation
http://en.wikipedia.org/wiki/Overshoot
http://en.wikipedia.org/wiki/Ringing
http://en.wikipedia.org/wiki/Step_response


Compensation

From Gray and Meyer  (p634)  Thus if this amplifier is to be used in a feedback 

loop with loop gain larger than a0f1, efforts must be made to increase the 

phase margin.  This process is known as compensation.  

From Sedra and Smith (p 90)   This process of modifying the open-loop gain is 

termed frequency compensation, and its purpose is to ensure that op-amp circuits 

will be stable (as opposed to oscillatory).

From Razavi (p355)   Typical op amp circuit contain many poles.  In a folded-

cascode topology, for example, both the folding node and the output node 

contribute poles  For this reason, op amps must usually be “compensated”, that is, 

their open-loop transfer function must be modified such that the closed-loop circuit 

is stable and the time response is well-behaved.



Compensation

What is “compensation” or “frequency 

compensation” and what is the goal of 

compensation?

Nobody defines it or defines it correctly but everybody 

tries to do it !



Compensation

Compensation (alt Frequency Compensation)  is the 

manipulation of the poles and/or zeros of the open-loop 

amplifier so that when feedback is applied, the closed-loop 

amplifier will perform acceptably

Note this definition does not mention stability, positive 

feedback, negative feedback, phase margin,  or oscillation.

Note that acceptable performance is strictly determined by 

the user in the context of the specific application



Compensation (better definition)

Compensation (alt Frequency Compensation)  is the 

manipulation of the poles and/or zeros of the open-loop 

amplifier so that when feedback is applied, the closed-loop 

amplifier will perform acceptably.

Note this definition does not mention stability, positive 

feedback, negative feedback, phase margin,  or oscillation.

Note that acceptable performance is strictly determined by 

the user in the context of the specific application

Note this covers linear applications of op amps beyond just 

finite-gain amplifiers

circuit



Approach to Studying Compensation

Will attempt to develop a correct understanding of the concept of 

compensation rather than plunge into a procedure for “doing 

compensation”

Compensation  requires the use of some classical  mathematical 

concepts



Compensation
Compensation is the manipulation of the poles and/or zeros 

of the open-loop amplifier so that when feedback is applied, 

the closed-loop circuit will perform acceptably

Acceptable performance is often application dependent and somewhat interpretation 

dependent

Although some think of compensation as a method of maintaining stability with 

feedback, acceptable performance generally dictates much more stringent 

performance than simply stability

Compensation criteria are often an indirect indicator of some type of desired (but 

unstated) performance

Varying approaches and criteria are used for compensation often resulting in 

similar but not identical performance

Acceptable performance should include affects of process and temperature 

variations

Over compensation often comes at a considerable expense (increased power, 

decreased frequency response, increased area,  …)



Compensation

• Often Phase Margin or Gain Margin criteria are used instead of pole Q

criteria when compensating amplifiers

(for historical reasons but must still be conversant with this approach)

• Nyquist plots are an alternative concept that can be used for 

compensating  amplifiers

• Phase Margin and Gain Margin criteria are directly related to the 

Nyquist Plots

• Compensation requirements are stongly β dependent

β (s )N (s )D (s )(s )D F B +=

Compensation requirements usually determined by closed-loop pole locations:

Characteristic Polynomial obtained from denominator term of basic feedback equation
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Pole Locations and Stability

Theorem:   A system is stable iff all closed-loop poles lie in the open left half-plane.

Review of Basic Concepts
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( ) ( ) ( )FBD s =1+A s β s



Consider a second-order factor of a denominator polynomial, P(s), 

expressed in integer-monic form

P(s)=s2+a1s+a0

Then P(s) can be expressed in several alternative but equivalent ways
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These are all 2-paramater characterizations of the second-order factor

and it is easy to map from any one characterization to any other

{ (a1,a2)  (ω0,Q)   (ω0,ζ)   (p1,p2)  (p1,k)   (α, β)  (r, θ) }

Widely used alternate parameter sets:

Review of Basic Concepts (from last lecture)



Review of Basic Concepts (from last lecture)
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1
sinθ

2Q
=

ωo = magnitude of pole

Q determines the angle of the pole

Observe:     Q=0.5 corresponds to two identical real-axis poles

Q=.707 corresponds to poles making 45o angle with Im axis
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What closed-loop pole Q is typically required when 

compensating an op amp?

Recall:

Typically compensate so closed-loop poles make 

angle between 45o and 90o from imaginary axis
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Pole Locations and Stability

Theorem:   A system is stable iff all closed-loop poles lie in the open left half-plane.

Note:  When designing finite-gain amplifiers with feedback, want to avoid 

having closed-loop amplifier poles close to the imaginary axis to minimize 

ringing in the time-domain and/or  to minimize peaking in the frequency 

domain 

Review of Basic Concepts
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Nyquist Plots

The Nyquist Plot is a plot of the Loop Gain (Aβ) versus jω in the complex plane

for - ∞ < ω < ∞

Theorem:   A system is stable iff the Nyquist Plot does not encircle the point 

-1+j0.

Note:  If there are multiple crossings of the real axis by the  Nyquist Plot, 

the term encirclement requires a formal definition that will not be presented 

here

Review of Basic Concepts

( ) ( ) ( )FBD s =1+A s β s

Note:  Multiple crossings issues are often of concern in higher-order control 

systems but seldom of concern in the compensation of operational 

amplifiers



Nyquist Plots
Review of Basic Concepts
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ω = - ∞

ω = ∞
ω = 0

Example

• Stable since -1+j0 is not encircled

• Useful for determining stability when few computational tools are available

• Legacy of engineers and mathematicians of pre-computer era

Aβ(jω)

( ) ( ) ( )FBD s =1+A s β s



Nyquist Plots
Review of Basic Concepts
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( ) ( ) ( )FBD s =1+A s β s



Nyquist Plots
Review of Basic Concepts

-1+j0 is the image of ALL poles 

The Nyquist Plot is the image of the entire imaginary axis and separates

the image complex plane into two parts

Everything outside of the Nyquist Plot is the image of the LHP

Nyquist plot can be generated with pencil and paper

Important in the ‘30s - ‘60’s

1+j0

Im

ReRe

Im β A(s)

s-plane complex-plane

( ) ( ) ( )FBD s = 1+A s β s



Nyquist Plots

Review of Basic Concepts

Nyquist plot can be generated with pencil and paper

Important in the ‘30s - ‘60’s

s-plane complex-plane

-1+j0 Re

Im

Remember – not even a handheld calculator was available !



Who Invented the Handheld Calculator?



Nyquist Plots

Review of Basic Concepts
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be sure Nyquist Plot does 

not get too close to -1+j0

( ) ( ) ( )FBD s =1+A s β s



Nyquist Plots

Review of Basic Concepts

But identification of a suitable

neighborhood is not natural
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Conceptually would like to 

be sure Nyquist Plot does 

not get too close to -1+j0

( ) ( ) ( )FBD s =1+A s β s



Nyquist Plots

Review of Basic Concepts

1+j0

Im

Re

Conceptually would like to 

be sure Nyquist Plot does 

not get too close to -1+j0

Re

Im β A(s)

Might be useful to be sure image of 45o lines do not encircle -1+j0



Nyquist Plots

Review of Basic Concepts

What if this happened ?
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Conceptually would like to 

be sure Nyquist Plot does 

not get too close to -1+j0
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At least one pole would make an angle 

of less than 45o wrt Im axis 



Nyquist Plots

Review of Basic Concepts
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Phase margin is 180o – angle of Aβ when the magnitude of Aβ =1



Nyquist Plots

Review of Basic Concepts
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Unit Circle

Gain 
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Gain margin is 1 – magnitude  of Aβ when the angle of Aβ =180o

( ) ( ) ( )FBD s =1+A s β s



Nyquist and Gain-Phase Plots
Nyquist and Gain-Phase Plots convey identical information but gain-phase 

plots often easier to work with

Note:  The two plots do not correspond to the same system in this slide
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Nyquist and Gain-Phase Plots
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Nyquist and Gain-Phase Plots
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Often β is independent of frequency
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in this case phase of Aβ is equal to the phase of A

Instead of plotting Aβ, often plot |A| and phase of A and superimpose |β-1| and 

phase of β to get gain and phase margins

do not need to replot |A| and phase of A to assess performance with different β
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Gain and Phase Margin Examples

Be aware of the multiple 

values of the arctan function !

Discontinuities do not exist in magnitude or phase plots
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But is it a good compensation ?

Stable !
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But is it a good compensation ?

Stable !
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But is it a good compensation ?



-40

-30

-20

-10

0

10

20

30

40

50

60

70

-300

-250

-200

-150

-100

-50

0

M
a
g
n
it
u
d
e
 i
n
 d

B
A

n
g
le

 i
n
 d

e
g
re

e
s

1β−

Gain Margin

Gain and Phase Margin Examples

ω

ω

-180o

( )31s

1000
T(s)

+
=

Stable !
But is it a good compensation ?



Gain and Phase Margin Criteria

Now that we know how to get gain-margin and phase-

margins, what gain-margin or phase-margin should be 

targeted?

What considerations should go into making this 

determination? 

Remember gain and phase margin criteria were primarily 

developed for determining whether a feedback amplifier 

is stable or unstable

There is no natural relationship between gain margin, 

phase margin and amplifier characteristics such as 

ringing and overshoot !  

Most authors simply give a number for the desired 

phase margin or gain margin  



In general, the relationship between the phase margin and the 

pole Q is dependent upon the order of the transfer function and on 

the location of the zeros

In the special case that the open loop amplifier is second-order low-

pass, a closed form analytical relationship between pole Q and phase 

margin exists and this is independent of A0 and β..

)sin(φ

)cos(φ
Q
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−+= −

24
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1
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1
1cosφ

The region of interest is invariable only for  0.5 < Q  <  0.7

larger Q introduces unacceptable ringing and settling

smaller Q slows the amplifier down too much

Relationship between pole Q and phase margin



Phase Margin vs Q 
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Phase Margin vs Q
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Phase Margin vs Q
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Phase Margin vs Q
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Phase-Margin Compensation Criteria

Q=.707

Q=0.5

φM ≈65o φM ≈77o

.707< Q <0.5 65o < φM < 75o

• This relationship holds only for 2nd-order low-pass open loop amplifiers

• Considerable evidence of use of these phase margin criteria when not 2nd-order 

low-pass but not clear what relevance this may have for FB performance



Stay Safe and Stay Healthy !



End of Lecture 16


